tolong jawabDiketahui P pada AB, tentukan lah kordinat P jika : a. A (-2 , 3), B (3, 7), dan AP :

Diketahui P pada AB, tentukanlah koordinat P seandainya :

a. A(-2, 3), B(3, 7), dan AP : PB = 3 : 2

b. A(-3, -2, -1), B(0, -5, 2), dan AP : PB = 4 : 3

c. A(5, 2, 1), B(9, 10, 13), dan AP : PB= 4 : 1​

(Jawaban:

a.

P(1,\frac{27}{5})

b.
P(-\frac{9}{7},-\frac{26}{7},\frac{5}{7})

c.

P(\frac{41}{5},\frac{42}{5},\frac{53}{5})
)

Cak bagi menyelesaikan permasalahan di atas, Anda dapat menerapkan konsep
vektor
yaitu

\vec{AB}=B-A

Penjelasan dengan awalan-langkah:

Diketahui:

a. A(-2, 3), B(3, 7), dan AP : PB = 3 : 2

b. A(-3, -2, -1), B(0, -5, 2), dan AP : PB = 4 : 3

c. A(5, 2, 1), B(9, 10, 13), dan AP : PB= 4 : 1​

Ditanya:

Tentukanlah koordinat P lega AB.

Jawab:

a. Kita n kepunyaan

\frac{\vec{AP}}{\vec{PB}}=\frac{3}{2}

2\vec{AP}=3\vec{PB}

2(P-A)=3(B-P)

2P-2A=3B-3P

5P=2A+3B

P=\frac{2}{5} A+\frac{3}{5} B

P=\frac{2}{5} \left[\begin{array}{ccc}-2\\3\end{array}\right]+\frac{3}{5} \left[\begin{array}{ccc}3\\7\end{array}\right]

P=\left[\begin{array}{ccc}-\frac{4}{5} \\\frac{6}{5} \end{array}\right]+ \left[\begin{array}{ccc}\frac{9}{5} \\\frac{21}{5} \end{array}\right]

P=\left[\begin{array}{ccc}1 \\\frac{27}{5} \end{array}\right]

b. Kita memiliki

\frac{\vec{AP}}{\vec{PB}}=\frac{4}{3}

3\vec{AP}=4\vec{PB}

3(P-A)=4(B-P)

3P-3A=4B-4P

7P=3A+4B

P=\frac{3}{7} A+\frac{4}{7} B

P=\frac{3}{7} \left[\begin{array}{ccc}-3\\-2\\-1\end{array}\right] +\frac{4}{7}\left[\begin{array}{ccc}0\\-5\\2\end{array}\right]

P=\left[\begin{array}{ccc}-\frac{9}{7} \\-\frac{6}{7} \\-\frac{3}{7} \end{array}\right] +\left[\begin{array}{ccc}0\\-\frac{20}{7} \\\frac{8}{7} \end{array}\right]

P=\left[\begin{array}{ccc}-\frac{9}{7} \\-\frac{26}{7} \\\frac{5}{7} \end{array}\right]

c. Kita memiliki

\frac{\vec{AP}}{\vec{PB}}=\frac{4}{1}

\vec{AP}=4\vec{PB}

P-A=4(B-P)

P-A=4B-4P

5P=A+4B

P=\frac{1}{5} A+\frac{4}{5} B

P=\frac{1}{5} \left[\begin{array}{ccc}5\\2\\1\end{array}\right] +\frac{4}{5} \left[\begin{array}{ccc}9\\10\\13\end{array}\right]

P=\left[\begin{array}{ccc}1\\\frac{2}{5} \\\frac{1}{5} \end{array}\right] +\left[\begin{array}{ccc}\frac{36}{5} \\8\\\frac{52}{5} \end{array}\right]

P=\left[\begin{array}{ccc}\frac{41}{5} \\\frac{42}{5} \\\frac{53}{5} \end{array}\right]

Makara, diperoleh koordinat titik P yaitu

a.
P(1,\frac{27}{5})

b.
P(-\frac{9}{7},-\frac{26}{7},\frac{5}{7})

c.
P(\frac{41}{5},\frac{42}{5},\frac{53}{5})

Pelajari lebih lanjut:

  • Materi adapun operasi vektor [brainly.co.id/tugas/14036025?referrer=searchResults]

#BelajarBersamaBrainly

#SPJ1